Journal of Computational Physi&66,84—-115 (2001)

®
doi:10.1006/jcph.2001.6644, available online at http://www.idealibrary.col DE &l.

A Triangle-Based Unstructured Finite-Volume
Method for Chemically Reactive
Hypersonic Flows

Enrico BertolazZf and Gianmarco Manzihi

*Dip. Ingegneria Meccanica e Strutturale, Univegsiti Trento, via Mesiano 77, 1-38050 Trento, Italy;
and tlstituto di Analisi Numerica IAN-CNR, via Ferrata 1, 1-37100 Pavia, Italy
E-mail: Enrico.Bertolazzi@ing.unitn.it; Marco.Manzini@ian.pv.cnr.it

Received November 29, 1999; revised September 25, 2000

A triangle-based unstructured finite-volume method is developed for chemically
reactive hypersonic calculations. The method is based on a Steger—Warming flux-
vector splitting approach generalized to mixtures of thermally perfect gases. Second-
order-in-space and time accuracy is provided by limited flux blending and an implicit
multi-stage time marching scheme. The final stiff non-linear problem resulting from
discretization presents a very peculiar block diagonal structure. This allows a de-
coupling of the species and gas dynamic equations in smaller subproblems. A linear
algebra argument based on M-matrix theory makes it possible also to show that the
method guarantees positivity of species mass densities and vibrational energies under
areasonabl€FL-like constraint. Finally, a set of 2-D numerical test cases illustrates
the performance of the methodeg 2001 Academic Press

Key Words:hypersonic flows; unstructured grids; finite volumes; semi-implicit
schemes; M-matrix.

1. INTRODUCTION

During the eighties and early nineties, both in the United States and in Europe, sev
projects were funded to design transatmospheric flight vehicles. This event had a great
pact on the fluid dynamics community and stimulated researchers to investigate hypers
flows and related topics. The modelization of such compressible flow configurations
its numerical approximation soon appeared as a considerably complex task, deserving
cial efforts to produce accurate and reliable results [12]. Indeed, the features of hypers
flow regimes are quite different from those of subsonic, transonic, and supersonic ol
Hypersonic flows are characterized by high-speed flows in low-density environments,
non-equilibrium thermodynamical effects are normally not negligible. In fact, the cruci
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issue consists of the significant departure of the fluid from ideal gas conditions, which m
be correctly accounted for; see Ref. [26].

Moreover, strong shock patterns may appear in the flow configuration, due to the cc
pressible nature of the fluid. The significantincrease in temperature and pressure across
Mach number shocks induces the excitation of internal vibrational modes of polyator
molecules, and dissociation and ionization reactions may occur.

Thefluid, i.e., air, is described as a chemically reactive mixture of thermally perfect gas
The usual inviscid gas dynamic equations apply to the conservation of fluid mass, mon
tum, and energy. The global mass conservation equation is replaced by a system of |
density (or mass fraction) conservation equations for each chemical species [1, 18].In g
tion, a vibrational energy conservation equation is to be considered for each polyatomi
vibrating—species; see Ref. [35].

Low densities, very high temperatures, and strong shocks thus produce non-ideal
modynamic behavior of the fluid, which demands special care in designing efficient ¢
accurate numerical algorithms.

High-resolution approximations of shock-wave dominated flows have been obtair
since the early eighties in the CFD community by means of shock-capturing techniqt
Both finite-difference (FD) and finite-volume (FV) schemes result the natural framewor
where the shock-capturing methodology may be applied. A great amount of literature
been produced and the interested reader may be referred, for instance, to the collecti
historical papers recently republished in Ref. [25].

Both FD and FV methods may take advantage of those classes of algorithms gene
referred to as upwind or flux-split schemes. In such algorithms, the estimation of the
merical flux is biased somehow in the direction determined by the signs of the character
flow fields. Among them, we will just mention the Steger—Warming flux-vector splittin
technique [40], whose extension to non-equilibrium flows has been utilized in the pres
work—see also the references above. A full presentation of these topics may be founc
instance in [16, 23].

It is an historical fact that the aforementioned methods were first developed for per
gas calculations. In this case, the equation of state is relatively simple and the homogel
of the inviscid compressible flux makes possible an almost straightforward procedure
obtaining algebraic relationships for the numerical split fluxes and their associated Jacok
[40]. The homogeneity property is not retained for a general real gas system [20], but |
still retained in the case of thermally perfect gases [18, 19, 32].

Several successful extensions have been proposed in the literature to generalize ug
and flux-split methods to the case of thermal and chemical equilibrium flows (see, for
stance, [14, 31, 43]) and subsequently to include the treatment of non-equilibrium chemi
and vibrational relaxation effects [1, 18, 19, 32, 38].

Another potential source of difficulty that numerical algorithms for high-speed flow
with real gas phenomena must account for lies in the presenatifbfource terms
[35]. More precisely, stiffness originates in the different time scales associated with flt
motion and non-equilibrium chemistry and thermodynamics; see [2, 35, 18]. If a cc
ditionally stable algorithm were naively used to advance a discrete solution in time,
instance, an explicit time-stepping scheme, stiffness would force the time step to a v:
which should be dramatically smaller than the one usually required by spatial accur
concerns. The resulting method would be too expensive and impractical for real ¢
culations.
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Frequent and rather common cures for stiff source terms in a set of ordinary differen
equations consist of adopting implicit discretization or some special splitting procedu
which allow a separate integration.

Both the approaches to including the stiff non-equilibrium chemically reactive ar
vibrational energy source terms in species conservation and gas dynamic equations
been exploited and investigated. However, special care is demanded in designing such
tion algorithms. It has been shown in [17, 29] and more recently discussed by [30] that wi
a conservation law is coupled to a stiff source term which represents chemical reacti
the numerical dissipation introduced by the scheme may produce an incorrect propagze
speed for a time-dependent discontinuous solution.

A decoupling of the non-equilibrium chemical and vibrational equations from the flui
dynamic system has been adopted, for instance, in [2]. The chemical species are first
vected without considering chemical and vibrational effects, and then chemical reacti
are integrated using a separate incremental scheme in conjunction with frozen flow co
tions. The time-split approach has also been shown to be effective in recent work by Fed
et al. [13]. Therein, second-order-in-time Strang splitting is utilized to handle source tert
separately as a set of stiff non-linear ODEs.

Alternatively, fully coupled approaches with implicit treatment of stiff source term
have been shown to be capable of accounting for non-equilibrium real gas effects; see
instance, Refs. [7, 18, 19, 21].

A strongly non-linear algebraic problem is provided by the discretization method, whi
requires some non-linear iterative technique with (formally) large matrix inversions at ec
iteration. The resulting algorithm may thus be very expensive.

Intermediate between decoupled and fully coupled approaches is the partially decou
semi-implicit scheme proposed for unsteady flows by [21]. The full set of equations
partially split into two subsets, the first one for the usual gas dynamic variables (total flt
density, momentum, and energy) and some characteristic thermal quantities (specific
ratio, the universal gas constant, assumed to be variable in space, and part of the ene
and the second one for species mass fractions and total energy. Despite the efficiency
the originality of the approach, the authors themselves report that their scheme may fa
calculating solutions dominated by very high Mach number and complex shock pattern
kinked Mach stem may appear in the ramp problem solution. This failure is a well-knov
and documented numerical effect, among the ones catalogued and discussed in detail in

The objective of the present paper is to present an implicit finite-volume approxime
solution algorithm, developed in the spirit of fully coupled methods, for time-depende
hypersonic calculations on 2-D triangle-based unstructured meshes.

The proposed method makes usage of a flux-vector splitting technique along the i
of the original Steger—Warming approach [40] and the generalization to non-equilibrit
flows proposed in [32]. However, it is formulated in a very general way by introducing
suitable chemical reaction matrix to treaty chemical and vibrational model. That is, no
model-dependent Jacobians are used to express numerical flux formulae.

Global second-order-in-space and time accuracy is provided by flux blending and impl
multi-stage time-marching scheme. A bidimensional flux limiter is introduced to contr
numerical oscillations. The new limiter effectively extends in 2-D the family of flux-limiting
functions analyzed by [41].

Although some standard and well-known techniques in shock-capturing methodology
utilized, the method presented herein is original—at least to the authors’ knowledge—in
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way the species mass densities, vibrational energies, and stiff source terms are impli
discretized intime. The approach leads to a non-linear algebraic problem with a very pect
block structure, which may be exploited to decouple at the algebraic level the species n
density equations, the vibrational equations, and the rest of the fluid dynamic system.

Thus, the global non-linear problem is decomposed into four separate smaller pr
lems, which are solved iteratively via a block Gauss—Seidel-like algorithm and a stand
preconditioned Krylov subspace solver [42].

Furthermore, each single block coefficient matrix is shown to be an M-matrix. Tt
property guarantees the positivity of the species mass densities and the vibrational ene
at each time-step under a suitable and not too restri@ie-like constraint. A way of
enforcing positivity on mass fractions and vibrational energies was proposed by [27] in
framework of approximate Riemann solver generalized to mixtures of real gases. Howe
as pointed out by the author, the main trade-off in this approach consists GHhéke
condition, which might be impossible to fulfill in practice.

In Section 2, we present the mathematical model, in Section 3 the derivation of the sche
and in Section 4 the algebraic decomposition and its iterative solution procedure. Fine
in Section 5, several numerical examples illustrate the shock-capturing capabilities anc
effectiveness in describing real gas effects of the new method. The test case suite incl
both classical 1-D calculations extended in 2-D and real 2-D simulations of unsteady sh
wave systems on compression ramps and a steady bow shock calculation in a blunt-|
problem.

2. MATHEMATICAL MODEL

The unsteady hypersonic flow of a mixture of compressible gases with chemically re
tive processes can be modelled by the following set of time-dependent partial differen
equations:

ou

ot + V- FU) = SV). Q)
System (1) expresses in divergence form the conservation of the vector of unkddwns
balancing their time variation rate with the convective fluk@g) and the chemical reaction
source term$§(U). These vector quantities take the form

p PRV

w
&y 'V z

U= , FU) = , S(U) = 2
i FO=| o al SV=1g @
pE pHvV 0

In Eq. (2), the components &f are logically collected in the species mass density vecto
denoted byp, the vibrational energy vectof”, the momentum vectopv, and the total
energy,p E. The symbol® which appears in the flux definition denotes the dyadic produc
between vectors, that i$a® b);; = ab;. The components op are the chemical mass
densities of theng different species considered in the modelindicates the total mass
density, the components of the vectdt are the vibrational energy of the, diatomic
speciesy = [u, v]T denotes the velocity vector, angE denotes the total energy. The
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pressurep satisfies the equation of state for a mixture of thermally perfect gases,
Ng 0
k
= —RT,
P g My

where we introduce the chemical molecular weighf of the kth species, the universal
gas constanfk = 8.3143 J/(mol K), and the translational-rotational temperaflre,
We assume thak satisfies the mechanical-thermal relation (see Ref. [7])

Ns n,

1
PE=TY m(Cl+h)+> & +5olve
k=1 j=1

whereC} andh{ are, respectively, the constant volume specific heat and the heat of format
at 0 K reference temperature for tklh species. The translational—-rotational temperatur
represents the contribution to the internal energy from the translational and rotational mc
of all molecules and atoms in the mixture, assumed to be in thermal equilibrium. It
worth noticing that the constant coefficier®§ do not represent the complete specific
heats, but just the parts due to molecular translation and rotation. They take the vz
C{ = (3/2)(R /M) for monatomic species arigf = (5/2)(R/My) for diatomic species
[26]. The total enthalpy is denoted by and is related td&, p, andp by

H=E+P2

0

The source vectd®(U) takes into account both dissociation—recombination and exchan
reactions in a mixture of thermally perfect gases. The termodels the chemical reactions
while the termz is responsible for the exchange reactions.

We assume that depends on the mass densitiesnd on the thermal state of the
mixture of gases. This latter one can be described in terms of the translational-rotatic
temperaturel’ and a set of vibrational temperatures (or energi€s)for j =1,...,n,,
one for each polyatomic species. Each vibrational temperature represents the contribt
to the internal energy by the vibrational modes of the corresponding polyatomic spec
Let us introduce thén, + 1)-component vectol = (T, T/, ..., T,;)U)T. Hence, we can
indicate the functional dependence of the source terasw(p, T), and its genericth
component can be expressed as in [2] by

wr =ZMJ(UrNj —U;j |}<f,(T)H(%> v ij(T)H (%) u‘|. @)
j=1 i=1 ! i i

In (3),vf; andvy; are stoichiometric coefficients, whikes (T) andKp(T) denote the forward
and backward rate coefficients, respectively. Their functional dependericesgmovided
by the chemical model.

As pointed out in [5], the source term can be written in the fornC(p, T)p, where

C(p, T) is anns x ns matrix with continuous entrie§;; (p, T), such that
@ GCii(p,T) <0 i=1...,ng
(b Cij(p,T) =0 i # ]

Ns
(© Zcij(p,T)=0 i=1...,ns

i=1
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The generiath component ofv can be decomposed into the sum of a production an
a consumption term, respectively, denoteddy and w;. That is,or = w” + w;. The
diagonal and off-diagonal entries of the matixp, T), respectively, contribute toF as

o (p, T) =Cir (p, por,

N (4)
o (p,T) =Y VCij(p, Tpj,

j=1

where the symbd[’ indicates that the term = r is droped out in the sum.
The generid th component of the vibrational energy exchange source term can be writ
as

g.eq_ EV a)+ a).i
5= I ey Yy
Tj Pj Pj

i=1....n, (5)

where&®1is the vector of the equilibrium energy densities and thare the relaxation
times [26]. Both constitutive relations férfq and expressions far to be used in practical
computations are model-dependent. As remarked in Ref. [32], the choice of an approp
model for describing a given phenomenology may be a difficult task. In this paper t
approximate solution algorithm is formulated as generally as possible by using the ma
C(p, T). In this way, we do not attempt to suggest which model should be used for practi
calculations, but many different models could be included in the algorithm by formal
changing the entries a€(p, T). More details about the chemical and thermodynamice
model used for the numerical tests in Section 5 are reported therein.

3. FINITE-VOLUME FORMULATION

In this section, we construct a cell-centered finite-volume method for numerical apprc
mations on unstructured 2-D grids of unsteady hypersonic flows. An upwind semi-discr
approximation of the integral form of system (2) is first derived. A finite-volume schen
can be obtained by introducing a finite difference approximation of the time derivative oft
vector of unknownd). It is well known that this approach yields numerical schemes whic
are formally first-order accurate in space and time [23]. The upwinding mechanism provi
enough dissipation to ensure monotonicity and prevents the formation of numerical osc
tions even if the solution shows strong shock discontinuities [16]. Higher order accuracy «
be obtained by blending the first-order upwind numerical flux with a second-order accul
symmetric one, along the lines of [44—46]. This blendindpisally driven by a suitable
limiting procedure which controls the numerical oscillations [41]. Second-order accure
in time is finally achieved by means of a two-step time-marching integration scheme |
Although some rather standard ideas from shock-capturing techniques are applied, se
aspects of the proposed approach are substantially new, to the best of the authors’ kr
edge. They are the final functional form of the numerical flux for a mixture of thermal
perfect gases, the form of the flux-limiter, the way the implicit discretization is performe
and the algebraic decomposition to solve the final stiff non-linear problem. For this reas
the derivation of the scheme is presented in full herein, while the essential features of
non-linear solution procedure are discussed in details in the next section.
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3.1. Preliminaries

Let us first introduce #&iangulationwhich covers all the computational domain—also
referred to as theneshn the rest of the paper. The triangulation is defined as a collection
N triangles, conventionally denoted By, and assumegtgularandconformalin the sense
specified by [8]. Triangles are conventionally labeled by an integer identifier ranging ir
global numbering system. The identifier may be generically indicated by the index lett
i, j,ork. For the generic trianglewe indicate by K;| the area of the triangle, by(i) the
set of adjacent triangles, and by(i) the subset of triangle edges located at the boundar
The internal edge shared by triangleand j will be denoted by the paiyj . For the sake
of notation consistency, a boundary edge will also be indicated by a pair of indices
being in such a case the unique triangle the edge belongs t&,asgecific boundary edge
identifier (like a fictitious “external” triangle). This convention allows us to refer to eithe
internal or boundary edges by means of an index pair. For the generi¢jedgeindicate
by lij its length, and byn;; the normal vector. This latter is assumed to be oriented fror
celli to cell andj, when the edge is internal and outward directed when the edge is on 1
boundary. For the sake of clearness, throughout the paper the ndtdtiom) will indicate
the normal projection of the flux vector, i.€&(U) - n.

The semi-discrete finite volume approximation is

dy;
IKild—tI + Z lijHUi, Uj, nij) + Z Iij’Hi(jb’C) = |Ki|S (Ui), (6)
jea() j’eo’ (i)
with the index running throughout all the mesh triangles, iies 1, 2, . .., N. This formu-

lation is obtained by integrating in a cell-wise fashion system (1), applying the diverger
theorem, approximating the interface integrals with the midpoint rule, and finally introdu
ing some suitable numerical flux function [23].

The quantityU; stands for the cell-averaged solution within the triangl@he terms
HU;, Uj, nij) andHi(jb,C) are respectively the numerical flux function at internal edges an
at boundary edges. The former depends on the cell averaged solutiamsiU; within
the cells sharing the given edge, while the latter depends on the cell-averaged ddjutio
within the unique boundary triangleand may depend in some suitable form on a set o

externaldataU }F’C) .

Remark. For boundary fluxes the notatiaﬂ\(jb,c) instead oH®°(U;, U(jk?c), nij) is pre-
ferred. This is because boundary conditions may differ at distinct boundary edges, imply
also a different functional form for the numerical fluxes.

3.2. Construction of the Numerical Flux

The construction of the numerical flux by a flux-vector splitting approach dates back
[40], where a decomposition of the form

HU,V,n) =F U, n)+F (V,n) (")

is proposed. In (7% (U, n) are the normal projections of the vect&¥s(U), and by defini-
tion there hold$=* (U, n) = J*(U, n)U. The matriced* (U, n) are built by diagonalizing
the Jacobian matri¥(U) and splitting its eigenvalues into a positive and a negative part. Th
approach basically relies on the homogeneity propecty) = J(U)U, which is satisfied



A 2-D UNSTRUCTURED FV HYPERSONIC SOLVER 91

by the compressible Euler flux [23]. As discussed in [18], homogeneity is again retair
in the case of a mixture of thermally perfect gases. Thus, accordingly to the form of |
flux vector F(U) for a reactive multi-component system in (2), and after some algebre
manipulations, the flux split methodology yields the two partial contributfohsas

F£(U, n) = a= (U, n)U 4+ G=(p, pv, U, n), 8)
where
0
. 0
G¥(p, pv,U,n) = pbi(U, nn ) 9)
ov - nb® (U, n) 4+ pc*(U, n)
and
. :I: . :t . — :l:
ai(u,n)zz’g(v nN*¥+-n+c)*+(V-n—c) 7
21+ B)
b*(U, n) = %((v- n+co*—(v-n-cb), (10)

2
ct(U, n) = %((v- n+co*+v-n—c* —2v-n*.

In Eq. (10), forg = (v - n), (v-n=£c), the symbolg* takes the usual definitiog* =
(g £ 1q])/2. Finally, the parameters, c, and« are defined as

R (0i /M) [1+8 c
= = <~ C= —0D, = s
P 221 pCP P N 1+8

wherecis the frozen speed of sound and-18 is the frozen specific heat ratio of the mixture
[21].

3.3. Semi-discrete FV Formulation

The semi-discrete FV formulation

du;
IKil dtl + E lij{a® (Ui, nip) Ui —a* (Uj, njHuU;} + g i {G™ (o1, (oV)i, Ui, nij)
jeal(i) jea(i)
— G (pj. (V) U ni} + Y i HE? = [Ki[S (Uy) (11)

j'ea’(i)

is obtained by using in (6) the definition (8) fér", and then exploiting the geometric
identity njj = —nj; and the “local” flux consistency conditidf* (U, n) = —F~ (U, —n),
which holds since the scheme must be conservative. The numericblfﬁﬂxalt boundaries
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can be written as

0

H? =652 |, [+ 7R U - mige + 6 F(UR) -y (12)

1

In Eq. (12) the parametefi§?™?, 6/¢, ands!"*" are three mutually exclusive switchers which
may take integer values 0 or 1, to get the correct boundary flux expression (respectively
asolid wall, free, or supersonic inleboundary).

Using the definition of»* in (4), within the triangle the source terng (U;) takes the
form

Clpi, Tp
S(Up =S, T) = S(Pi’Ti>®5eq;d(pi,Ti>®5v ’
0
where
[t Dl = 3 + ‘”W;’T) [s(p. )]s = } - %”T)

The symbol {]; indicates the component related to thie species.

Note that the distinct functional dependence on the density vpaad the temperature
vectorT in the source terris still retained. This choice will be motivated in the following
section.

3.4. Base First-order Semi-implicit Scheme

The base time-marching scheme is obtained by approximating the time derivative
U;—which appears in the first term in the semi-discrete formulation (11)—Dby first-ord
finite differences

dui| _ uptt—urn
dt |,_p At

)

whereUi”Jrl andU!" are the cell-averaged solutions within the trianighe timest"** and
t", andAt = t"*1 — t", Let us also introduce the symbols andG{j defined as

aﬂ =a’ (Uin, njj ), Gn Gt (p|n+1 (pV)nJrl, Uin, nij).

Thus, the base time-marching scheme takes the form

urtt —un
K S U - U+ Y 1y (G - G

jeal(i) jeo(i)

+ D lpHET = IKiS(e! L TY). (13)

j’ea’(i)
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The term(d]j Uin+1 —aj U?*l), which appears in the first summation in (13), is originated b
considering the first—zeroth order—term of the Taylor expansion in tinee 8 (t), n;j)
aroundt”. This strategy will also produce a block-diagonal matrix operator, whose bloc
matrix components are M-matrices; see Section 4.

The term(G] L Gji "+1y which appears in the second summation in (13), is instea
originated by usngn |n b*(U, n) andc®(U, n), and o™ and (pv)"+* for the termsp
andpv, which appear explicitly in the definition @* (o, pv, U, n) given in (9) and (10).

The discretization of the source teSﬁpi'H'l, T is implicitly dependent on the density
vector p and explicitly dependent on the temperature ve@tolhe implicit dependence
on p is chosen for stability reasons to cope with the stiffness introduced by the chemi
reactions [2]. Instead, an explicit evaluationTois preferred, because an implicit evaluation
of the temperature would result in a strong non-linear system due to the exponential na
of the Arrhenius equation; see the Appendix.

Scheme (13) is globally first-order accurate in space and time.

3.5. Second-Order-in-Space Accuracy

The accuracy in space may be improved by blending the first-order-accurate upw
numerical flux in (8)—(10) with a central symmetric flux, i.e.,

FU,n) —FV, —n)

HWU,V,n) = A-6)F"U,n) —F"(V,—-n))+6 > ,

(14)

where the parameter € [0, 1] can be locally estimated. The choiée= O returns the
original first-order upwind flux, while the choige= 1 returns the second-order central
numerical flux. The issue of how to estimate an appropriate value for the paraiister
addressed in Section 3.7. Using the definition of blended numerical flux given in (14), w
the normal flux(U, n) written as

0
F(U.M) = (v- MU+ GU. M, GUm =S| ©
9 - 9 9 9 - 1+ﬁ pn b
ov-n
the computational Scheme (13) becomes
Un+l Un 1 1 n,n+1 2n,n+1
IKil=—+ > {aiurt —anurtt) + 1 {6t - G
jea(i) jea()
+ > Ii,-in(Jb,C)” IKilS(pM . 1) = > 1 {ofur — anuf). (15)
i’ea’ (i) jeo()

For the sake of clarity, in Eq. (15) we have introducedéksependent symbols
&j = (1—6pa’ U, ny),
bij = ei(v- - nij)
ij = 2 i ij/)s

. b
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Note that a new term appears in the r.h.s. of Eq. (15), due to the blending of numer
fluxes.

3.6. Second-order-in-Time Accuracy

The semi-discrete formulation in (6) actually consists in a large system of ordinary diff
ential equations in the unknowhk; . The time-marching scheme presented in Section 3.
basically consists of the application of a semi-implicit version of the Euler method for OD
A formally second-order-accurate-in-time scheme may be obtained by applying a sligl
modified version of the two-step Collatz algorithm; see [9]. The first step evaluates a [
liminary solution at the intermediate tim&'/2, The second step evaluates the numerica
fluxes by using the approximate solutiortst'/? and advances the solution frafto t"*+2,

An implicit treatment of the source vector te@fp, T) must always be devised because of
the stiffness introduced in the equations by the chemical reactions. Computational stab
can be ensured by treating implicitly the dependence amd explicitly the one of in

the source tern$in both steps [2, 13].

First step:
UHH/2 —u +12 +1/2 +1/2 +1/2
n '\ n n,n n n
K=+ 2 i {aur e - aiui e+ 3 {6 }
jeali) jea(®
+ Z lij H (bc)n — K |S( 1/2 1 |n) _ Z lij {alr} un — ﬁ?i U’J‘} (16)
j'ea’ (i) jea(i)

Second step:

1
|K.|Uin+l_uin + Z [ An+l/2Uin+1+Uin _f;,ln-&-l/ZUri]Jr +UT
At 18 2 i 2
jea()
+ Z I {éir}+1/2,n+1/2_érjwi+1/2,n+1/2}+ Z Iy H|(Jb/c)n+1/2
jea () j’ea’(i)

=K |S( n+1 Tn+1/2 Z Iy {5 n+1/2 |n+1/2_i>;‘li+1/2urjl+l/2}. (17)

jeai)

3.7. 2-D Limiting Procedure

In this section we present our strategy for estimating the coeffigignhe estimation is
local in the sense that a different facégris computed for each internal edge, depending ot
the approximate solution value within adjacent cells. Remark théatfactor is needed for
boundary edges, since the numerical flux is specified by the boundary conditions;;Eacl
takes avalue intherange [0, 1] and thus plays the role of a flux limiter. In the last two decac
the limiters have been extensively studied in the framework of high-resolution finite-volur
schemes, and a considerable amount of literature has been produced; we just mentio
general review given in [23]. For the sake of convenience, limiting strategies are grouy
in two great families, flux-limiters and slope-limiters. Th®pe-limitersare designed to
ensure properties such as the preservation within each control volume of the integral
averageFlux-limiters, while ensuring conservation, may not be expected to preserve t
latter property. Our limiting strategy is based on a simple heuristic 2-D extension of t
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1-D class of limiters which compare consecutive variations of the approximate numeri
solution. Those 1-D limiters have been widely experienced by a number of authors
theoretically analyzed by [41]. The proposed face-based limiting strategies has prove
be successful in all of the present calculations. It does allow an edge-based implement:
and does not need the storage of an accumulated limiter for each triangle. Neverthe
while ensuring conservation, to the authors’ knowledge itis not known whether the preset
limiting strategy can preserve the integral cell average. The above issue is beyond the s
of this work.

Inorderto detect shock discontinuities in the approximate solution, we compare the slc
of some given indicatag), such as the pressure or the total density. Slopes are estimatec
both sides of an internal edge as normal projections of the gradient of a linear interpo
of q.

Let us denote by ; the centroid of theth triangle and byX;; the point defined as

LZXJ if ij is an internal edge,
Xij =
midpoint of edgej if ij is a boundary edge.

To compute the values @&f we use the following procedure:

(i) Define

929 if ij is an internal edge,
4= o] if ij is a boundary edge,

wheregq; is the value taken by within trianglei, as illustrated by Fig. 1.

(i) For each trianglé, build the operatott;, which linearly interpolates the three nodes
(Xij, Gij), ] € o(i)—inthe case of a boundary edge, tgke o’'(i) in place of the missing
triangle.

(i) For each internal edgg , define the slopes ands; as the gradient of; andx;
projected along the directiam; .

(iv) For each internal edge; is defined as

{0 if ss; <0,
Vij = 3 min{s |.Is;}} i
maxs Lol otherwise

FIG. 1. Construction of the limiter.
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For time-dependent calculatiofig is set toy;;. For steady ones, the limiter proceeds
throughout two further steps:
(v) For each triangle defing as

O = Jvij Vikvil -
(vi) For the internal edgg defined;; as
9” = min{vi,- , 01, 9]' }.

In the computation done in the papgee |v|, C.

4. SOLUTION ALGORITHM

By inspecting the structure of the two-stage scheme formulated in Section 3.6, we r
that Egs. (16)—(17) can be written more compactly in matricial form,

First step:
En (pn+1/2)Un+1/2 + gn,n+1/2 — Bn'

Second step:

LMHY2(pM ML | g2z _ g2

In these step£™*(p) is the block-diagonal matrix operator

DI (p) + MM ® I, 0 0 0
0 DIt (p) + MM @ 1, 0 0
' 1
0 0 MM @ |, 0 (18)
0 0 0 M+

A unified time index notation was introduced such that 0 ande = 1/2, respectively,
denote the first and the second stage of the method. The terms involg&d*irmre defined
as

1
DZTJQ(/’) = §jj At (ot + Z)C(p’ i),

1 (19)
D2l (p) = &ij At (a + E)d(p’ i),
and
IKil+ 8 S di it =,
s {0 o™ 1 N
- (s

whereg;; in (19) is the Dirac—Kronecker symbol. Tigeoperator

o o o, T
grtertiZ = (0 0 ghyert? gt (21)
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and the r.h.s. vector
Bn+a — (bg-&-a bgta b;;/&-a bn+a) (22)

are expressed by some rather complicated formulae reported in the Appendix for the .
of completeness. Let us first notice tm;*“ andD)* are, respectively, a block-diagonal
and a diagonal non-negative matrix.

A remarkable property holds for all the diagonal blocks forming the operator (18). V
formally state it in the next proposition. The proof is given in the Appendix.

PropPosITION4.1. The four diagonal blocks defined (h8) are M-matrices.

The formal inverse of an M-matrix has only non-negative entries. Thdﬁ;*"ﬁ >0
andbl"t* > 0, thenphtet/2gntetl/2 > 0 that is, the scheme prevents by constructior
that negative—i.e., unphysical—densities or vibrational energies appear during the solu
process. A simple inspection of the r.h.s. terms—see the Appendix for details—shows
positivity of species mass densities and vibrational energies generally hold uEktlike
constraint omAt. This can be formally stated as follows.

ProPOSITION4.2. Let us denote by h the minimum height of the triangles in the mes
and suppose that

@) pP">0 and &V">0;

(i) 2maxu, ¢} < 1/6, where u= max|v;|} and c=maxc;}.

Thenp™! >0 and &' >0.

The proof is given in the Appendix. Proposition 4.2 (ii) leads to an important reductic
of the time-step-size. The time step becomes smaller but comparable to the one typic
associated with an explicit time-marching scheme. Numerical experience shows that
tivity of species mass densities and vibrational energies still holds when greater time st
corresponding t&FL numbers of about one, are used. It is reasonable to conjecture t
Proposition 4.2 states a somewhat crude estimate which is far from optimality.

The block-diagonal structure of the opera®tt™ suggests a block Gauss—Seidel-like
decoupling into four separate subproblems to be solved sequentially. The solution algori
proceeds as follows:

(i) Solve the non-linear system for species mass dengities
(Dzw (pn+oz+1/2) + MM @ |ns) nt+a+1/2 _ bn+a
(i) Solve the linear system for vibrational energtgs
(D2+O‘ <pn+a+l/2) + M e ® ln )gv N+a+1/2 bn+a
(iii) Solve the linear system for momeng,

1/2 ,n+1/2
(M n+a ® | )(pv)n+a+ / bn+ot g;\);l&-a n+1/ .

(iv) Solve the linear system for total energ¥,

M n+o (,0 E)n+a+l/2 er—oz _ gz-&éa,n+l/2.
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Stage (i) requires the solution of a non-linear problem. The non-linearity is due to the impli
treatment of the chemical reaction source terms. If chemical reaction processes were ak
alinear problem should be solved instead. Let us introduce thelngap RN*"s — RN*Ms
which is formally written as

d(p) = (D2+a(p) 4+ MM ® Ins)*lszrot’

and whose domain of definition is the convex compact set

N
K = {pe RV™ | p, >0, foralli, Y IKillp L= Hb2+°‘||1}-

i=1

The solution of (i) is a fixed poinp"t*+1/2 = ® (p"t**+%/2), As already noted in [5]®

is a continuous map frorK into itself and the Brouwer fixed point theorem [48] implies
that at least one non-negative fixed point must exist. Furthermore, if the time\stisp
sufficiently small, the map is also contractive and convergence of the iterative fixed pc
scheme is guaranteed. In practice, it has been noticed that iterations easily converge \
the initial guess solution is obtained by first solving a problem without chemistry—i.e
with null source terms. The upgraded valuegpft*+'/2 are then substituted g+ +'/2,
Stage (i) is thus linearized and may be solved by a diagonally preconditioned Bi-CGST,
method; see Ref. [42]. Stage (iii) is also linearized by using the upgraded values of
species mass densitiegfji*"**/2. Similarly, stage (iv) can be linearized by substituting in
g';;““”“/ % the upgraded values f@)+*+1/2and also fopv)"+*+1/2 previously estimated

in Stage (iii).

Stages (iii) and (iv) are solved by an iterative Bi-CGSTAB method, preconditioned by
incompletel DU factorization. Since in stages (iii) and (iv) the system matrix is the sam
the preconditioner is computed only once. As reported earlier in this section, the coeffici
matrix of the resulting linear problem in (iii) and (iv) is an M-matrix. It is possible to shov
that theLDU factorization of an M-matrix does not require any pivoting (see [3]), thu
resulting in a simplification of the incomplete factorization algorithm for preconditioning

Remark. The cost of solving the non-linear system does not depend directly on t
number of reactions included in the model; see, e.g., [4]. However, it is affected by f
stiffness of each reaction. That is, if one more reaction is included into the model, whict
very stiff, the iteration matrix of the final non-linear system may become more ill conditione
and the number of iteration steps be increased.

In our implementation of the method, each iteration step basically requires the dir
solution of a linear system afs equations ims unknowns per triangular cell, wheng is
the number of species. Then, the cost of such an iteration is roughly proportiogattdl,
whereN is the number of triangles, if the factorization is performed at each iterative ste
This cost could be reduced to be proportionahfo< N if the system was first linearized.
Nevertheless, this strategy would imply a great amount of storage for the memorizatior
the linearized factors, and the loss of the non-negativity of the computed mass fraction

We finally mention that in the literature some efficient techniques have been propose!
solve similar non-linear systems; see Refs. [10, 33].
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5. NUMERICAL TESTS

Seven different test cases from the literature illustrate the capabilities of the pres
method in hypersonic flow calculations with non-equilibrium chemical reaction and vibr
tional energy effects. The implementation is based on the freely availabe software libr
p2mesh; see Ref. [6].

The first three test cases are bidimensional transpositions of some rather “classical”
shock-tube problems. They include the Lax problem [28] and the Sod problem [39] for in
air, and the chemically reactive shock tube problem for a mixture of gases reported in |

The second three test cases consist in different shock wave systems propagating in
escent inert air on a 2-D compression ramp. Inert air is assumed to be a mixture of al
76.71% N, 23.29% Q, and null fractions for N, O, and NO. In all these test cases, con
plex unsteady shock wave patterns are characteristic of the solution and must be corr
captured by the scheme.

The final test case consists in a hypersonic blunt-body flow in pure nitrogen, wher
steady bow shock forms.

In the first two 1-D shock tube calculations—the ones with Lax and Sod initial data—t
calculations are performed for all the chemical species considered in the model, but nei
reactions nor vibrational energy exchange occurs. These calculations show that the scl
is capable of solving “pure” gas dynamic problems. In all the other test cases, chem
reactions and vibrational energy exchanges are present.

The chemical reaction processes herein considered utilize the Dunn—Kang or the Pat
model; see Refs. [36, 47] for a detailed presentation. Both models—in the version with
free electrons and ions and associated reactions—describe air as a mixture of five spe
N2, Oz, NO, N, and O, which are assumed to be thermally perfect gases. Both moc
consider 15 elementary dissociation—recombination reactions and two exchange react

N>+ M= 2N+ M,
O,+M =20+ M,
NO+M =N+O+ M,
N2+ O = NO+N,
NO+O <= 0O +N.
M represents a collision partner catalytic moleculeand may be any one of the previous

species. The equilibrium energ§®and the vibrational energyf’, respectively, depend on
the translational temperatuffeand the vibrational temperatuf@ by

-1 -1
eq _ PR Qir _1 LR eir _1
&= \ &P\ T & T (ol :

with r = Ny, Oz, NO. Their characteristic vibrational temperatures take the valyes
3395 K, 6o, = 2239 K, antbyo = 2817 K, which were obtained via spectroscopic mea
surements and are reported for example in [7].

The Landau-Teller relaxation timesin Eq. (5) are given by

Ng —1/3 1/4

> 1(ps/ Ms) exp( A (T~1/3-0.015:14) — 18.42) M Ms
g === rs and =1000————.
f (p/101325 3.0 1 (ps/Ms) Hrs My + Ms
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The coefficients\, take the valuegy, = 220, Ao, = 129,Ayo = 168; see, e.g., [7]. These
semi-empirical relations are known to be valid over a temperature range from 300 throi
9000 K, see [7, 34].

5.1. Shock-Tube Problems in 2-D

The computational domain for the shock-tube problems is the bidimensional st
[—0.5,0.5] x [—-0.025 0.025]. A diaphragm, located along the vertical lirRe=0, sep-
arates the initial left state, denoted Hy)( and the right one, denoted bRR). In the Lax
and Sod problems, the shock-tube is filled by inert air. In this case, the usual value of
specific heat ratio holds; i.er,= 1+ 8 = 1.4.

In the shock-tube problem with chemistry, only the right side of the shock-tube dom:
contains quiescent inert air. At the left of the diaphragm, the temperature is high enot
to induce chemical and vibrational effects. The air composition is thus assumed to b
equilibrium at the given temperature, which corresponds to a mixture composition of 44..
N2, 7.36 x 1072% O,, 2.3% NO, 31.4% N, and 22% O.

Lax problem:

(L) p =0.445kg/n?, u=0.698m/s p=3528Pa
(R) p =05kg/n?, u=0mys, p=0.571Pa

Sod problem:

(L) p =1kg/n?, u=0m/s p=1Pa
(R) p =0.125kg/n?, u=0m/s p=0.1Pa

Shock-tube problem with chemistry:

(L) p=2532kg/nt, u=0m/s T = 9000 K
(R) p=1156kg/nt, u=0m/s T =300K

Attimet = 0 the diaphragm is instantly removed and well-known patterns of interactir
rarefaction waves and contact and shock discontinuities begin to form [1, 23]. All the rest
reported here were calculated on an unstructured irregular mesh of about 700-1500 trian
see Fig. 2. Figure 3 shows the density solution of the Lax problem computed @115
s. The calculation was performed by using a fixed time gtép= 0.15 ¥100= 1.5 ms.
Figure 4 shows the density solution of the Sod problem computdd=a.24 s. The
calculation was performed using a fixed time step= 0.24 §100= 2.4 ms. Figures 56
show the solution of the shock-tube problem with chemistryy-at0.16 s, computed by
using a fixed time stepst = 0.16 ms/200= 0.8 us. In order to compare the results obtained

FIG. 2. Computational mesh.
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342 triangles

FIG. 3. Solution of Lax problem at time = 0.15 s; mass density distribution.

in this test case with the ones reported by [1], the Park air model was included in the sol
It is informative to say that in the three cases the 2-D solver was tested on several |
of meshes, both regular and irregular ones. Irregular meshes were generated by tria
with the requirement that a maximum angle constraint be satisfied; see the document:
reported within the software distribution package and also Ref. [8]. Regular meshes w
built by simply partitioning regular square-shaped cells in four sub-triangles. No orientati

342 triangles

0.4

0.3

0.2

0.1

FIG. 4. Solution of Sod problem at time= 0.24 s; mass density distribution.
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1550 triangles

4 i e

FIG. 5. Solution of shock tube problem at tinhe= 160 «s; mass density distributions.

effects were noticed in these computed solutions. However, we noticed that triangles 1
produce a slight distortion in the front of an advancing shock wave. This effect seems
be influenced by chemical and vibrational relaxation processes, being more apparer
the reactive calculations. As far as shock resolution accuracy is concerned, we remark
the discontinuity is generally well resolved in these problems with an average “width”
three—five triangles. This result is also in accord with the behavior observed in the Z
calculations reported in the following section.

1550 triangles

3.0%
2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

FIG. 6. Solution of shock tube problem at tinme= 160 «s; NO mass fraction distribution.
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TABLE 1
Initial Values for Compression Ramp Problems

Single Complex Double
" (kg/m?) 1.05702 0.70678 0.382407
un (m/s) 447.077 3205.8 2646.49
T" (K) 510.147 4080.08 3373.17
%t (kg/m?) 0.387 0.0777 0.0476
Tou (K) 299.2 299 299.2

5.2. Two-Dimensional Test Cases

Three numerical solutions of shock wave propagation problems are presented to illust
the performance of the method in predicting 2-D unsteady hypersonic flows. The exam|
consist in calculating the single, complex, and double-Mach reflection of a planar sh
wave incident on a compression ramp. An unsteady complex shock pattern forms on
ramp and evolves during the reflection process. In these calculations we used the lin
described in Steps (i)—(iv), Section 3.7.

The final test case concerns with the numerical approximation of a blunt-body hypersc
flow around a two-dimensional circular cylinder and illustrates how the method perfort
in a steady-state calculation. The longitudinal axis of the cylinder is orthogonal to t
free-stream flow direction and a steady bow shock forms above the cylinder. Across
steady shock wave the flow temperature raises and thermodynamic equilibrium is rea
by a strong non-equilibrium dissociation process. In this calculation we used the limi
described in steps (i)—(vi), Section 3.7. The steady state solution is achieved by relaxinc
initial free-stream solution by using (16), which is a first-order-in-time marching schern
No acceleration techniques—such as local time stepping or residual smoothing—have |
introduced.

The cost of solving the non-linear system for the species mass densities was experir
tally measured and varies throughout 60% to 70% of the total cost of the computati
depending on the test case; see Table 2.

A detailed presentation of all of the test cases can be found in Refs. [11, 15, 21, 24], wt
both results from laboratory experiences and numerical simulations are reported. A ¢
parision to the mentioned literature results shows that our method generally performs v

5.2.1. Single Mach reflection in air.Table 1 summarizes the inlet and initial quiescent
states of the problem. The moving shock wave Mach numhdg is- 2.03 and the compres-
sion angle is 27. In this reflection process, the temperature never attains values capabl
inducing non-equilibrium reactions. Hence, the test case mainly allows the shock-captu
capability of the method as a compressible gas dynamic solver to be checked. Figures

TABLE 2
Relative Chemical Computational Costs

Complex Double Blunt

Cost percentage 68% 67% 59%
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52742 triangles

TrTeTreT AAas) A TrTeTTrT ke aans
0.07 0.05 0.03 0.01 0 -=0.01

FIG. 7. Single Mach reflection in air; mass density ratj@/f,) distribution, wherep, is the density of
quiescent air. Axes units are meters.

depict the density contours and the wall density distribution attisaeél 00us. The solution
is computed using a fixed time-steg = 100 4s/800~ 0.125 s on a mesh with 52,742
triangles. TheCFL ranges from 0.79 to 0.99.

5.2.2. Complex Mach reflection in airTable 1 summarizes the inlet and initial quies-
cent states of the problem. The moving shock wave Mach numbdg is 10.37 and the
compression angle is 10Figures 9-10 depict the density contours and the wall densi
distributions at timet =20 us. The approximate solution is computed by using a fixec
time-stepAt = 20 ©s/800= 0.025 s on a mesh with 34,833 triangles TGEL is stable
at 0.87.

5.2.3. Double Mach reflection in air.Table 1 summarizes the inlet and initial quies-
cent states of the problem. The moving shock wave Mach numbég is 8.7 and the
compression angle is 27Figures 11-12 depict the density contours and the wall densi

4.9

o

0 001 003 005 007 009

FIG. 8. Single Mach reflection in air; mass density ratio wall distribution. Axes units are meters.
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34833 riangles

—w LIS S DL RS

0,00 rrrrrrerrrrrrrreee
0.08 007 006
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0.05 0.04 003 002 001 000

FIG. 9. Complex Mach reflection in air; mass density ratig/fo) distribution, wherep, is the density of
quiescent air. Axes units are meters.

0 b

t

T T T T i Bt
0 001 0062 003 004 005 006 007 008

0
0

FIG. 10. Complex Mach reflection in air; mass density ratio wall distribution. Axes units are meters.

64435 triangles

04
0.08 007 006 005 004 003 002 001 000

FIG. 11. Double mass reflection in air; mass density rapgq,) distribution, wherep, is the density of
quiescent air. Axes units are meters.
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FIG. 12. Double mass reflection in air; mass density ratio wall distribution. Axes units are meters.

5277 triangles

0.056
] 12
0.05+ 1
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0.04 9
] 3
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-0.036 -0.03 -0.02 -0.01 0

FIG. 13. Blunt-body flow in nitrogen; mass density ratip/(o.,) distribution, wherep,, is the density free-
stream gas. Axes units are meters.
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=0.035 =0.03 =0.024

FIG. 14. Blunt-body flow in nitrogen; zoomed views from Fig. 13.

distributions at timeé = 24 us. The approximate solution is computed by using a fixed tim
stepAt = 24 4s/1000= 0.024 s on a mesh with 64,435 triangles. TGEL ranges from
0.67 to 0.82.

5.2.4. Blunt-body flow in nitrogen.Table 3 summarizes the free-stream conditions o
the problem. The free-stream gas is 7% dissociated nitrogen; the frozen-flow Mach nun
is about 6.9. The radius of the cylinder is 2.54 cm.

Figures 13-14 depict the density contours over all the computational domain and tt
zoomed views of the region across the bow shock.

This steady-state solution is reached in 6,000 iterations with a timeAdtep0.05 us
corresponding t€FL = 1.3 on a mesh with 5277 triangles.

TABLE 3
Free-Stream Values for the Blunt-Body Problem

P (P3 Pso (Kgim®) Use (M/s) T (K)

2.445 55 x 1078 55 x 1C¢° 1400
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6. CONCLUSIONS

We have presented here a finite-volume scheme for hypersonic flows on 2-D unstructt
triangle-based meshes. The scheme makes use of a numerical flux obtained by blend
first-order upwind flux with a second-order central one. A new 2-D flux limiter is presents
to prevent the formation of numerical oscillations near solution discontinuities. Then
two-stage time-stepping scheme formally guarantees global second-order accuracy.
way we propose to perform implicitation in time of the stiff chemical source terms ar
of the numerical flux produces a non-linear fully coupled algorithm with a very peculi
algebraic block structure. We suggest a resolution strategy based on a block Gauss—S«
like decomposition into four smaller problems which may be solved sequentially. A line
algebra argument based on M-matrix theory ensures the positivity of species mass den:
and vibrational energies under a not too restric@\d -like constraint. Several numerical
examples illustrate the capabilities of our methodologies in accurately solving strong shc
dominated hypersonic flows. Finally, it is worth mentioning that the method is quite gene
and can be easily extended to three dimensions, where reduction of computational cos
essential.

APPENDIX

The explicit form of the reaction matri€(p, T) is shown in Table 4, where

ro— Pm o= My
m= 7> =
Mm MN + MO
M + Mo & —1—a
1= A5x4 s 2 = 1—d,
2Mpn + Mo
2Mo
=0 p=1-by,
Mn + 2Mo
2My
GQ=s—F—7— C=1-c,
2MpN + Mo
Mn + Mo
dl:7’ d2:1_d17
Mn + 2Mo
and
Fj =ZKfjmrm, Qj :Zijmrm,
m m
TABLE 4
The Reaction matrix C(p, T) for the Five-Species Dunn and Kang Model
—In, —ToKyy 0 Gl Koy 2Qp, 'y + CifnoKpy 0
0 —F02 —rNKhO blroKfO 0 2902r0+b1rNoKfo
airoKyy dir v Kpg —I'no —ToKig —InKpy  2nofo + tiro,Kog Qnoln + &y, Ky
Iy, + aar oKy 0 alyo + baroKyg —2Qn,In — Qnolo  &rn, Ky + balnoKig

—InoKby = To,Kbg
0 o, + darnKpy (L= a)Tno + CornKpy  CofnoKpy + Galo, Koy —2R0,0 — 2nofn

=TIy, Ky —TnoKig
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where j = Ny, Oy, NO, andm = Ny, O, NO, N, O. The reaction ratesKand K, are
assumed to be functions @f, T, T;, T7, and they are described by the modified forms
of the Arrhenius equation. These reaction rates K, take the functional form

-
KkT? exp(—_l_a),
S

whereTs is a function of the translational and vibrational temperatureskarid T, are
coefficients that depend on the specific reaction. The values of the coefficiént,, and
the precise form of the functiofy for each reaction can be found in [7, 36, 47].

A.0.1. OperatorgG in (21)

Let us set
2

1 6 C N+a
Ci = <a+ 2>At|ij {2 i 2|/3. +@1- 9.,)b+(u.,n.1)} :

1
pe = (ot )ty (L gt Ui

Then we have

,n+1/2 1/2 1/2
G = T (G + O g,

oV, J
jea()
n+a,n+1/2 1/2 1/2
Goei " =D (G av)™ R = CR (o v )™ - yp)
jeol(i)

N+ n+1/2 nta N+1/2
+ J;) D —Dji™p; )
A.0.2. RH.S.In (22)
Let us first introduce
0 if ij is not an edge,
A= S A it £ ],
Zkerr(i) ikéinkw ifi=j,
and
if ij is not an edge,
vi;”“:m(aJr%) —lij o5 ifi # ],
Zkea(i) ikf)inkw ifi = J
The r.h.s. terms for densities and vibrational energies take the form

byt = |Kilp! — Z {20 Al pl 4 Ve e
i

( )At Z |” elnlet (bc) n”) (bc)—i—Ofree(Vl nij’)pi]n+a,

j’ea’ (i)



110 BERTOLAZZI AND MANZINI

n+u¢ |K |(5”” +S( n+a+1/2 Un+a) ®geqn) Z {zaAn+agv n + Vn+a5u n+a}
j

( )At 7 L [V nig )£ + gltesv - mngr] " (AL
jrea’ (i)

The r.h.s. term for the momentum equation is

bivs = IKil(ev) = > {2 AT (oW + Vi (ov) ]}
j

1 @
(a3 )8t X 1A ng) oui + pfn ]

j'ea’(i)

( )At > LIV i) (evyi + pimg ™

j’ea’(i)

< )A'[ Z |IJ 950|Id n+oznIJ

j’ea’(i)

The r.h.s. term for the total energy equation is

b = IKil(E) = > {2« AT (pE)] + Vit (pE)T**}
j

1 ; o
~(a3) At T o ) (0B + )

j’ea’ (i)

( )At > 6 - i) [E + pl)™e

j'eo’(i)

A.0.3. Proof of Proposition 4.1

If A andB are two matrices of orden x n andp x q, thetensor producA ® B is the
block matrix of ordemp x ngwhose block, j is given by(A ® B); j = Aj;B. The tensor
product has some noteworthy properties; see, for instance, [22]. We just mention the
used in the following proof, that iSA ® B) (C ® D) = AC ® BD, with A, B, C, andD
four generic matrices (with compatible dimensions).

Let us introduce the definition of an M-matrix.

DEFINITION A.1. Any matrix A of the form A = sl — B, with s > 0 andB a non-
negative matrix, for whicls > p(B), the spectral radius @, is called arM-matrix. When
s > p(B), A is called anon-singularM-matrix.

We recall some well-known results without proof in the following technical lemma. /
detailed exposition of the matter can be found in [3].

LEmMMA A.1. The following statements are equivalent:

(i) Aisanon-singular M-matrix;

(i) AT is a non-singular M-matrix;

(i) there exists a positive vectorsuch thatAx is also a positive vector;
(iv) A~lis a non-negative matrix.
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Remark. Statement (iv) in Lemma A.1 is not needed in the present proof, but is usec
Section 4, and is mentioned here for the sake of completeness.

A positive vectorx is a vector all of whose entries are positive. As usual, the proper
will be denotedk > 0, which stands fox; > 0 for alli. The symbok, which indicates a
vector inR¥ whose components are all equal to unity, will also be used.

Proof of Proposition 4.1. Here we will show in reverse order that each diagonal bloc
in (18) is a non-singular M-matrix.

(i) Since there holds

N

(eLMn-s-a)j — Z l\/lir}+°‘ — Mjnj—m + Z Mir}-ra
i=1 i#]

At R At A
=K+ = > @ — o D lag
keo (j) keo ()
= |Kj| >0,

it immediately follows from Lemma (A.1) witlkx = ey that thefourth diagonal block in
(18), i.e., the matriM"+* defined in (20), is an M-matrix. It is also worth noticing that
M ™ is a strictly column diagonally dominant matrix.

(ii) Let us take the vectax = ey ® &. We have

X'(M™ @ 1) = (en ® ) (MM ® 1))
=(eh ®e )M 1))
=ey\M™* ® gl
—elM™* @el >0

from the definition of the dyadic product asfM"** > 0. Thus, Lemma (A.1) yields that
the matrixM"™* @ | is a non-singular M-matrix. Choosirlg= 2 it follows that thethird
diagonal block in (18) is a non-singular M-matrix.

(iii) The same argumentused in (ii) wikh= n, yields thatM"** ® I, is a non-singular
M-matrix. SinceD]"®(p) is a diagonal non-negative matrix, Lemma (A.1) witk= ey ®
e, and a direct calculation yield that tilseconddiagonal block in (18), i.e DI (p) +
MM @ I, , is also a non-singular M-matrix.

(iv) The same argument used in (ii) with= ng yields thatM "** ® |,_is a non-singular
M-matrix. Let us takex = ey ® &,,. From the properties of the matr—see Section 2—
and the definition in (19) we have thdtDQ*"‘ (p) = 0.Lemma (A.1) and adirect calculation
yield that thefirstdiagonal block in (18), i.eD;‘,*“ (p) + M™* @ 1, ,isalso anon-singular
M-matrix.

A.0.4. Proof of Proposition 4.2

To simplify the notation, let us introduce in (A.1) the symbols

Fi’ =4d"q — &g,

1
Fio = 5@ Vi +qvp)™ - nij,
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whereq; is anyone of the components pf when celli. Boundary condition terms will

also be neglected. That is, for the sake of clarity we will consider only internal edges.

generalization of the following argument which includes also boundary edges is trivial.
Ther.h.s temb;‘j" associated to thigh triangle cell can be expressed as

1
|Ki|Qi - Z OlAtl” 1 9n+a) ISU) Z <2+O[) At||19n+aF(C).

jea() jea()

We seek a sufficient condition which implieg"™ > 0. Let us split the first term into
three contributions to be attributed to each (internal) edge of celequality surely holds
when we have

min{g; [Kil. g 1K1}
3

1
Atli R > Atljj 05+ [(2 + (x> RO — ozFi(ju)] (A.2)

for eachj € o (i).
Consider first the second stage, ie+ 1/2; we get

2min{q; [Kil, g;1K; I}
3At|ij

—FY >0 22RO — FY). (A.3)

We must necessarily require that there hold

2min{q; [Kil, g;1K; I}
3At|ij

which is ensured by assuming that satisfies &CFL-like constraint of the form

2|Ki]
At = 3” max{ n+1/2 n+1/2}' (A4)

» &ji

After this condition is assumeq“l/ 2

and every edg¢ € o (i) there holds

can be computed from (A.3). Since for every cell

+1/2 +1/2 +12 +1/2 +1/2 +1/2
max{afj ™2, & ™} < max{ VT2, VTR | [eA ) < maxqivl, [l
andlL > 11, we obtain
At 1
= max(v, [el) < ¢, (AS5)

whichis the constraint oat given in Proposition 4.2. A similar argument for the vibrational
energy source terofl ™~/ gives the same constraint.
At the first stage, |.eq = 0, condition (A.2) reduces to the following condition én

2min{q; K|, g;j|K;l}
3At|ij

> 0 F©.

but if condition (A.4) is satisfied there are no restriction®gn
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Remark. Itis worth mentioning that (A.5) does not prev@q’jt”/2 from reaching unity
in smooth solution regions, where second-order accuracy should be (formally) attainec
; ; ; W o g0
fact, in smooth region we can have approximatgly: g; and Fiju ~ Fjj”. Then we can
approximate (A.2) as

2q min{|Ki], |Kj[} n+1/2
- —qV-n> (146 V- n,
3 Atljj G - ( R )ql

Hence, we have

2min{|K;l, [Kjl} n+1/2
- > (146 V-n,
3 Atlij ( " )

n+1/2

if we want6j; ~ 1 we finally have

At
av ‘n<1 (A.6)

Hencep/ "/

i is not constrained in smooth region by tBEL-like condition (A.6)
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